HDR Signaling and Propagation Within IP Workflows

John Mailhot – Imagine Communications

HDR Signaling? Is there a problem here? (IP SHOWCASE

- SMPTE 2110 (and also SDI and every file format and codec) use numbers to represent color values.
- There are thousands of ways to do this, and <u>dozens of them</u> are in use in different corners of the television industry
- How do we know what a given tuple of "pixel data" means?

(1011010010, 01001011010, 1011011011) (0100101010, 01001101011, 1001010100) (1101001001, 01001011010, 1101101101) (1011110110, 01111101101, 0011001101) (0111011010, 101101010, 110110101) (1101010101, 011011010, 1101001010)

By: Phrood - Own work (Public Domain)

HDR Signaling – How does SDI do it?

(IP SHOWCASE

If its 525@29.97, or 625@25 then probably its ITU Rec 601

- Typical today is 4:2:2/10 bits, but 8-bit also existed
- 525 and 625 are slightly different R, G, B values
- RGB 4:4:4 systems also exist

Item	Characteristics						
	Parameter	625		525			
2.6.1	Chromaticity coordinates, CIE 1931 ⁽¹⁾	x	У	x	У		
	Primaries Red	0.640	0.330	0.630	0.340		
	Green	0.290	0.600	0.310	0.595		
	Blue	0.150	0.060	0.155	0.070		
2.6.2	Assumed chromaticity for equal	D ₆₅					
	primary signals – Reference white	x		у			
	$E_R = E_G = E_B$	0.3127		0.3290			
2.6.3	Opto-electronic transfer characteristics before non-linear precorrection	lectronic transfer characteristics Assumed linear non-linear precorrection					
2.6.4	Overall opto-electronic transfer characteristic at source ³	$E = (1.099 L^{0.45} - 0.099) \text{ for } 1.00 \ge L \ge 0.018$ $E = 4.500 L \text{ for } 0.018 > L \ge 0$ where: L: luminance of the image $0 \le L \le 1$ for conventional colorimetry E: corresponding electrical signal					

$$D'_{Y} = INT \left[0.299 \ D'_{R} + 0.587 \ D'_{G} + 0.114 \ D'_{B} \right]$$
$$D'_{CB} = INT \left[\frac{-0.299 \ D'_{R} - 0.587 \ D'_{G} + 0.886 \ D'_{B}}{1.772} \times \frac{224}{219} + 2^{n-1} \right]$$
$$D'_{CR} = INT \left[\frac{0.701 \ D'_{R} - 0.587 \ D'_{G} - 0.114 \ D'_{B}}{1.402} \times \frac{224}{219} + 2^{n-1} \right]$$

HDR Signaling – how does SDI do it?

- If its 1080i@29 or 1080i@25, then ITU Rec 709 applies
- If its 1080p@29 or 1080p@25, then ITU Rec 709 probably applies
- If its 1080p@59 or 1080p@50, then ITU Rec 709 <u>might apply</u>
- Typically, 4:2:2/10 bit, but 4:4:4/10 and even 4:4:4/12 also exist

1.2	Overall opto-electronic transfer characteristics at source ⁽¹⁾	$V = 1.099 L^{0.45} - 0.099$ $V = 4.500 L$ where: L : luminance of the image V : corresponding electrical	for $1 \ge L \ge 0.018$ for $0.018 > L \ge 0$ $0 \le L \le 1$ signal	$D'_Y = \text{INT} \left[0.2126 D'_R + 0.7152 D'_G + 0.0722 D'_B \right]$	
1.3	Chromaticity coordinates (CIE, 1931)	x	y	$D'_{CB} = INT \left[\left(-\frac{0.2126}{1.8556} D'_{R} - \frac{0.7152}{1.8556} D'_{G} + \frac{0.9278}{1.8556} D'_{B} \right) \cdot \frac{224}{219} + 2^{n-1} \right]$	
	Primary $- \operatorname{Red}(R)$ $- \operatorname{Green}(G)$ $- \operatorname{Blue}(B)$	0.640 0.300 0.150	0.330 0.600 0.060	$D'_{CR} = INT \left[\left(\frac{0.7874}{1.5748} D'_{R} - \frac{0.7152}{1.5748} D'_{G} - \frac{0.0722}{1.5748} D'_{R} \right) \cdot \frac{224}{210} + 2^{n-1} \right]$	
1.4	Assumed chromaticity for equal primary signals (Reference white)	med chromaticity for D_{65} l primary signals erence white)		$\begin{bmatrix} (1.5748 & 1.5748 & 1.5748 & 7.219 \end{bmatrix}$	
		x	У		
	$E_R = E_G = E_B$	0.3127	0.3290		

HDR Signaling – Might Apply? ??

- SMPTE introduced Video Payload ID (VPID) to capture the emerging variations of SDI – including colorspace and transfer characteristics
- VPID is required on 1080p50 & 1080p59 signals (and above)
- VPID is rare on 1080i and below

What is this VPID thing anyway?

- SD-SDI was simple enough
- HD-SDI was just faster bits
- SMPTE ST 425-1 defined it first, but only for 3GSDI
- SMPTE ST 352:2013 generalized it for SD & HD
- 425-1 revised twice since
- 425-5 defines it for UHD
 - In 2014
 - Then again in 2015
 - Then perfectly in 2019

Not Every Piece of Equipment gets it right – for some value of "right"

Describing light with numbers

- Transfer Characteristic (OETF/EOTF, linear to nonlinear)
- Colorspace (R' G' B' \rightarrow Y' Cb' Cr') (or X'Y'Z' or l'Ct'Cp' or...)
- Sampling 4:4:4, 4:2:2, 4:2:0, and bit depth

(1011010010, 01001011010, 1011011011) (0100101010, 01001101011, 1001010100) (1101001001, 01001011010, 1101101100) (1011110110, 01111101101, 0011001101) (0111011010, 101101010, 1101101101) (1101010101, 011011010, 1101001010)

By: Phrood - Own work (Public Domain)

2110-20 developed an extensible lingo (I

- colorimetry = [BT601, BT709, BT2020, BT2100, ST2065-1, ST2065-3, ...]
- sampling = [YCbCr-4:2:2, YCbCr-4:4:4, RGB, XYZ, KEY, ...]
- depth = [8, 10, 12, 16, 16f]
- TCS = [SDR, HLG, PQ, LINEAR, ST2065-1, DENSITY, ...]
- RANGE = [NARROW, FULL, FULLPROTECT]
- There is a huge space of permutations of the above, with a sparse set of operating points that are used in reality
- This lingo for describing the signal could outlive ST2110-20 itself
 - Also used for JPEG-XS and other emerging new format descriptions

ST 2110 – data –vs- metadata

- In ST 2110-20, pixel data is transported in a tight-packed format inside the IP datagrams.
- The "decoder ring" (metadata) for parsing, understanding and using the pixel data is sent ahead of time in the SDP, so the receiver knows what its getting
- But what if the metadata (the decoder ring) changes ?
 - Structural changes (width, height, sampling, bit depth, frame rate)
 - Interpretation changes (Colorimetry and TCS)
 - HOW DOES THE RECEIVER FIND OUT THE NEW METADATA?

HDR Signaling and Controllers

(IP SHOWCASE

- In ST 2110-x environments, generally there is a "broadcast controller"
 - Finds and Inventories the endpoints through AMWA IS-04 and other means
 - Makes connections of senders to receivers using IS-05 and other means
- To be effective in the real world, the controller must also handle:
 - Tracking changes of the senders (metadata changes)
 - Propagating these changes to all current receivers rapidly
- Note that changes to metadata might make a signal unsuitable for certain receivers – and receiver can object to the new signal

2110-40, VPID, and dynamic sigaling

- ST2110-40 transports ANC data (generically) over IP
 - And VPID is technically an ANC data packet
- Should VPID be transported over 2110-40?
 - Opinions vary and there are arguments both ways on this point
 - 2110-20 is clear that the SDP must reflect correct data
 - 2110-40 is a separate essence and does not necessarily follow the video
- We cannot have a garbage-in garbage-out world
 - Devices that produce SDI output are responsible for their output VPID
 - A VPID on -40 may not be relevant for the output (format conversion, etc)
- SDP can express combinations that are not representable in SDI VPID
- Receivers should trust the SDP more than anything that comes in -40

What about dynamic HDR metadata?

(IP, SHOWCASE

- HLG is a "fixed" system with no metadata, perfect for production
- PQ can be fixed also, and in production environments likely is
- Recently VANC packets have been defined for dynamic metadata
 - Colorimetry VANC packet
 - HDR metadata packets
- These add additional information that is NOT in the SDP, and should be carried in 2110-40, and used by receivers which understand them

HDR Signaling – to sum up

- SDI can do what it can do
- 2110-20 & SDP can express more different formats, extensibly
- VPID in -40 doesn't replace the need to follow the SDP (so why...?)
- HDR dynamic metadata can be routed alongside the video with -40 since it supplements (but should not contradict) the SDP

Any Questions?

